UCRL- 92085
PREPRINT

PERFORMANCE OF THE BUTTERFLY PROCESSOR-MEMORY
INTERCONNECTION IN A VECTOR ENVIRONMENT

Eugene D. Brooks III
Parallel Processing Project
Lawrence Livermore National Laboratory
Livermore, CA 94550

This paper was prepared for submittal to the
1985 International Conference on
Parallel Processing

St. Charles, IL
Auaust 20-23, 1985

This is a preprint of a paper intended for publication in a journal or proceedings. Since
changes may be made before publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the

VIRCULATION copy

L)

\.H_:’{'.EJE(?T TO RFCAIL
IN Two WELKS

DISCLAIMER

This documesat was prepared as am accomnt of work sponsored by an agency of the
United States Goversment. Neither the Uuited States Government nor the University
of California nor any of their employees, makes any warranty, express or Implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or useful-
ness of any information, apparatus, product, or process disclosed, or represeats that
its mse would not Infringe privately owned rights. Reference herein to any specific
commercial products, process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or the University of California. The
views and opinioma of authors expressed berein do mot pecessarily state or reflect
those of the United States Government or the University of California, and shall not
be used for advertising or product endorsement purposes.

Performance of the Butterfly Processor-Memory
Interconnection in a Vector Environment/

Eugene D. Brooks 111

Parallel Processing Project
Lawrence Livermore National Laboratory
Livermore, California 94550

ABSTRACT

A fundamental hurdle impeding the development of large N common
memory multiprocessors is the performance limitation incurred in the switch con-
necting the processors to the memory modules. Multistage networks currently
considered for this connection have a memory latency which grows like alogeN‘ .
For scientific computing, it is natural to look for a multiprocessor architecture
that will enable the use of vector operations to mask memory latency. The
problem to be overcome here is the chaotic behavior introduced by conflicts
occurring in the switch. In this paper we examine the performance of the
butterfly or indirect binary n-cube network in a vector processing environment.
We describe a simple modification of the standard 2x2 switch node used in such

networks which adaptively removes chaotic behavior during a vector operation.

January 1985

tWork performed under the auspices of the U. S. Department of Energy by the Lawretice Livermore Nation-
al Laboratory under contract No. W-7405-ENG-48.
“By using nen switch nodes (5| memory latency can be reduced to alog, N.

Performance of the Butterfly Processor-Memory
Interconnection in a Vector Environment!

Eugene D. Brooks III

Parallel Processing Project
Lawrence Livermore National Laboratory
Livermore, California 94550

1. Introduction

The VLSI revolution, which has drastically reduced the cost of computer circuits, is making
large N multiprocessor designs possible. VLSI implementations of pipelined processors have
become so cheap that cost is no longer the factor which inhibits the development of high perfor-
mance shared memory multiprocessors. One of the stumbling blocks preventing the development
of such machines is the problem of keeping a large number of pipelined processors adequately fed
from a shared memory. This is the topic which we will deal with in this paper. Unfortunately,
other problems exist. Synchronization cost, discussed in [1], must also be dealt with before such
machines will become a reality.

There are several techniques which can be used to connect processors to the memory
modules of a multiprocessor. We consider how to make effective use of the butterfly or indirect
binary n-cube packet switching network, shown in figure 1, to do this. Other authors [3-5] have
investigated the properties of § and banyan networks of which the butterfly is a member. Of
particul;u' note is the work 91' Dias and Jump, where the value of adding buffers to the switch
nodes of the network was clearly demonstrated. We take a systems approach in our investiga-
tion. The packet switching network is just one part of the parallel computer architecture which
must be considered as a whole. Only by considering the system of interacting components, in
this case the user application, the cpu nodes, the switching network and the memory modules,

can one put the performance analysis of the switching network into context.

4

7
ik

Figure 1

- 4

<O ZmZ

=@l o @lel=vie]
E@E@:@Oﬂﬂﬁcauu—a

T

BOECEEEOEMEMAEEE

The butterfly multiprocessor architecture.

As one of the fundamental problems imposed by the switching network is latency, we con-
sider the use of vector operations in multiprocessors. The use of vectorization to deal with a
latency problem is not new, it is the technique of choice in many high speed computers. -There
are many algorithms which will run efficiently on multiprocessors if vector operations can be
made to run at full bandwidth. In the standard switch implementations considered to connect
processors to memory modules in large N multiprocessors, fluctuations in timing caused by
conflicts lead to further conflicts in the switch. This chaotic behavior causes a bandwidth reduc-
tion for vector operations. By introducing a modification to the standard 2x2 switch node used
in such networks, we construct a processor to memory connection which will adaptively remove
the chaotic behavior caused by conflicts. With the new switch design t-he system will eventually
fall into lock step during a simultaneous vector operation by all of the processors. If the vectors
are long enough the startup overhead can be amortized and full utilization of the processing

power of the machine can be obtained.

-3-

The sections of this paper are as follows. In section 2 we consider the constraints placed on
the processor nodes by the behavior of a packet switched memory server. In section 3 we con-
sider the performance of a memory server constructed from the standard 2 buffer switch node
appearing in the literature. We consider both vector gather/scatter operations and vector
loads/stores with strides. For vector operations with strides, starting at random addresses, the
standard switch node delivers disappointing results which are similar to those for gather/scatter
addressing. In section 4 we introduce our modified 2x2 switch node with 4 internal buffers. For
random addressing, a switch made of these nodes delivers a normalized bandwidth approaching
unity as the lengths of the buffers are increased. When we consider vector loads and stores, with
random starting addresses, we get surprising results. The new switch adaptively removes the
chaotic behavior caused by conflicts and after a settling time achieves a normalized bal;dwidth of
unity. Every processor, or memory module for vector stores, receives a vector element on each

clock cycle. Finally, in section 5, we discuss these results and their implications for the future of

large N common memory multiprocessors.

2. The architecture of the epu node

In order to put our simulations of the butterfly switch into context, we consider here a cpu
architecture which would be useful on such a system. We envision a RISC architecture [2], with
vector instructions, that cleanly separates memory operations from the other functions of the
cpu. As we describe the architecture of the cpu node, which is shown in figure 2, we will point
out the features that were introduced in order to obtain good performance when used with a
packet switched memory server.

In order to understand the reason for the fundamental feature of the processor, the clean
separation of memory operations and data manipulation functions, consider how the cpu fetches
operands from the memory server. Suppose we want to load register RO with a word from
memory at address A. In executing this instruction, the execution unit marks the register RO
empty and puts a load request packet on its port to the memory server. Once the load request
packet is dispatched the execution unit is free to begin another instruction. The register RO will
be filled some indeterminate number of clocks later without further attention by the execution
unit. Should a later instruction require register RO, and it is still empty, the execution unit will
wait until it is filled. Through careful reordering of t)le separate arithmetic operations and
memory requests, one can mask some of the latency which occurs in packet switched memory

servers. If contiguous sets of registers are manipulated as vectors, and full bandwidth can be

-4

maintained through the switch, the latency of the memory server will be fully masked.

~ PC
SP e/t
— FP |e/f floating
AP eff add
ul N-3 |e/f
RNZ e/l
.
° request
° :
RS [of N _—
R 2 e/t unit) server
- R1 e/f
RO Y3 answer

Figure 2

A cpu architecture suitable for multiprocessors.

How does the register get filled? The request packet contains a token indicating the desired
operation, in this case "load register RO with a word”, the address A and the identity of the cpu
making the request. The switch uses the address A to route the packet to the memory module
containing the desired word. Once the request packet arrives at the memory module, an answer
packet is constructed which contains the desired data, the operation token and the identity of
the cpu making the request. The cpu identity is used to route the answer back to the cpu ori-
ginating the request. When the answer reaches the cpu originating the request the data is depo-
sited in register RO independently of the operation of the execution unit. As the packet may
conflict with others sent by different cpu nodes, the delay for a load request can not be deter-
mined in advance. Furthermore, the ordering of the answer packets is not guaranteed to be the
same as the request packets. Because of this, the request and answer packets must carry the

register destination and each register of a group being used as a vector must have its own empty

full state.
In order to be viable for use in a multiprocessor our cpu node must also have synchroniza-
tion instructions. Due to the possibility of a synchronization operation beating a memory opera-

tion through the switch, return receipt packets are included for write requests. A counter in the

-5-

cpu node keeps track of the pending read or write requests and a synchronization instruction
waits until all memory requests have been satisfied. By using a return receipt mechanism for all

memory operations the integrity of shared data can be guaranteed.

3. The peiformance of the standard switch

Consider a memory server constructed from the 2x2 switch node shown in figure 3. Pack-
ets enter the two input ports on the left and feed the internal buffers. A single bit of the packet
is used to determine the output port that will be used to exit the switch. If this bit is O then the
packet will exit output port 0. Otherwise the packet will exit output port 1. The heads of the
two buffers compete for access to the output ports. If both packets are destined for the same

output port one must wait while the other moves through the port.

©— —®
O— —0

Figure 3
The standard 2 buffer switch node.

Using this switch model we simulated a memory server for a saturated random addressing
load, which would occur for a gather/scatter vector operation with random addresses, and for a
stride 1 vector load with random starting addresses. The system was started with an empty net-
work and all processors began making requests. simultaneously. In table 1 we show the normal-
ized bandwidth, the bandwidth divided by N, as a function of network size and buffer length.
The poor performance of the switch for a buffer size of 1 is clearly demonstrated. As the buffer
size is lengthened the normalized bandwidth approaches 75%. This would not be a bad perfor-
mance level for random gather/scatter addressing but we would prefer that the normalized
bandwidth approach 100% as the buffer length is increased. When s{ride 1 vector addressing
with random starting addresses was simulated we obtained results similar to those shown in table
1. The conflicts caused by the random starting addresses led to chaotic behavior. Although 75%

of ideal performance might be acceptable even for vector operations with strides, we would prefer

a multiprocessor system that could adaptively remove the conflicts and eventually achieve ideal

bandwidth.

Normalized random fetch bandwidth
N buffer length

1 2 4 8 16 32
2 |40 375 75 75 75 .75
4 |31 59 67 711 73 .74
8 |.25 51 63 69 .72 .74
16 | .22 46 60 67 .71 .72
32 120 43 58 67 .70 .72

Table 1
Normalized random fetch bandwidth for the standard 2 buffer switch node.

4. The modified 4 buffer switch node

Why is the bandwidth of the 2 buffer switch node limited to 75%? Examining figure 3 we
can see the root of the problem. If the two packets at the heads of the buffers need to be routed
to the same output port one of them must wait for the next clocék cycle. The waiting packet
blocks any packet sitting further back in the buffer which is destined for the unused port. If we
could implement a 2x2 switch that could manage to slip a packet past this block, full bandwidth
would be maintained. In figure 4 we show a 2x2 switch capable of performing this feat. This
switch has 4 internal buffers. Packets entering the input ports are sorted into the buffers accord-
ing to the output port they are destined for. With this presorting of packets into separate
buffers the only way we can have a blocked port is to have zero packets in the switch destined

for the port. If the buffers are long enough this is unlikely to happen.

Figure 4
The modified 4 buffer switch.

It is not surprising that a butterfly network constructed from this new switch node gives a
limiting normalized bandwidth of 1 for gather/scatter operations with random addressing. In
table 2 we show the bandwidth of the system for such operations as a function of N and the
buffer length. When we tried stride 1 vector operations, with random starting addresses, we
would have been happy with similar results. Instead the new network delivered a surprise. After
an initial settling in period the system fell into lock step with every cpu getting a vector element
each clock cycle. The new switch adaptively absorbed the conflicts caused by the random start-

ing addresses and eventually reached a bandwidth of 1.

The vector elements, however, do not arrive in the exact order of request. They arrive in a
bunny hop! which is dependent on initial conditions. The approximate ordering allows chaining
of arithmetic operations if the cpu is properly designed. The result is not restricted to a stride of
1. If suitable constraints on the initial starting addresses are met, for instance if the stride is 2
then exactly half of the starting addresses must be even, the network locks in to a normalized

bandwidth of 1 for any stride. This restriction on the starting addresses is just the one required

for full bandwidth on a crossbar.

tA very dated dance craze.

Normalized random fetch bandwidth

N buffer length

1 2 4 8 16 32
2 |40 83 92 96 .98 99
4 |31 66 8 93 .96 .98
8 |25 60 82 91 94 96
16 |22 55 .79 89 93 .96
32 |20 53 .77 88 93 .96

Table 2

Normalized random fetch bandwidth for the 4 buffer switch node.

The first question that one asks, given the results discussed above for vector operations, is
how long must the vectors be. In table 3 we provide the answer for stride 1 vectors with ran-
dom starting addresses. The column labeled by n,, ny and ng give the vector lengths required
for an average normalized bandwidth of %, %, and .9 respectively. The column labeled L; gives
the buffer length required to achieve lock step. As can be seem in the table, the vector lengths

required for efficient operation do not grow too rapidly with the number of cpu nodes N. The

buffer lengths required grow very modestly with N.

Performance for stride 1 vector loads
log,N rN | ny r Ny | ng [L,
1 2 2 6 19 1
2 4 7 21 64 2
3 8 11 a3 100 2
4 16 14 48 145 2
5 32 21 72 226 4
6 64 34 114 370 6
7 128 50 177 550 12
8 256 84 225 712 12
9 512 71 297 1099 21
10 1024 88 393 1398 20
11 2048 110 453 1783 NA

Table 3

Vector lengths required for stride 1 vector operations.

It is interesting to consider the functional dependence of the vector lengths ny, ny and n,

on N for large N. By plotting n vs log,N on a log-log plot we find that the points fit a power

-9.

curve very well for large N. Performing a standard power curve fit to the last 8 points we find

the following relationships.

n, = .850(log,N}>%4 (1)
ta = 191(log,NJ2 @)
ng = 4.09(log,N)*** (3)

The quality of the power curve fit is clearly indicated by the plot of ny vs log,N shown in figure

5. We are well into the [arge /N regime with our simulations.

Ng/

Log, N

Figure &
Plot of ny vs log,N.

-10-

§. Conclusions

We have presented a modified butterfly memory server network that is capable of deliver-
ing full bandwidth to a large number of processors performing simultaneous vector operations.
The memory server adaptively absorbs conflicts and timing fluctuations making it suitable for
general purpose large N pipelined multiprocessors. Scalar fetches through the memory server
still incur a latency of alog,N which limits scalar performance of the machine. The switch
saturation caused by vector operations will reduce scalar fetch performance even further. In a
real machine one would of course include local memory in order to increase speed for scalar data
which does not need to be shared. It may also be profitable to include a separate memory server
switch for scalar fetches from shared memory. Examining these issues is beyond the scope of
this paper.

We have not investigated banyan networks [5| to see if the same basic switch node
modification yields adaptive behavior for vector operations. This is an interesting proposition as
these networks offer a much lower latency of alog,/N where j is the number of ports on the basic
switch node. The lower memory latency would improve the speed of scalar operations and would
reduce the vector lengths required for efficient vector performance. We will report on banyan
and other networks with interesting features in a future paper.

It is very encouraging that pipelined arithmetic can be efficiently used in large N common
memory multiprocessors. The constraint placed on the code for such machines, the use of vec-
torization, is the salﬁe one that users of high speed computers deal with mow. We have
presented a shared memory architecture which can give full memory bandwidth for vectorized

problems. Will computer manufacturers build us one?

References

[t] T.S. Axelrod, "Effects of Synchronization Barriers on Multiprocessor Performance,” sub-
mitted to: JEEE Trans. Comput.

[2] D. A. Patterson, "Reduced Instruction Set Computers,”, Commun. ACM, Vol. 28, Num. 1,
pp. 8-21 (Jan. 1985).

[3] J. H. Patel, "Performance of Processor-Memory Interconnections for Mﬁltiprocessors,”
IEEE Trans. Comput., vol. ¢-30, pp. 771-780 (Oct. 1981).

|4] D. M. Dias and J. R. Jump, "Analysis and simulation of buffered delta networks.” IEEE
Trans. Comput., vol. c-30, pp.273-282 (Apr. 1981).

-11-

{5] S. Cheemalavagu and M. Malek, "Analysis and Simulation of Banyan Interconnection net-
works with 2x2, 4x4 and 8x8 Switch Elements,” Proc. Real-Time Systems Symposium,
pp.83-89, Los Angeles, California (Dec. 1982).

